z-logo
Premium
Gravity interpretation of sedimentary basins with hyperbolic density contrast 1
Author(s) -
Rao C. Visweswara,
Pramanik A.G.,
Kumar G.V.R.K.,
Raju M.L.
Publication year - 1994
Publication title -
geophysical prospecting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.735
H-Index - 79
eISSN - 1365-2478
pISSN - 0016-8025
DOI - 10.1111/j.1365-2478.1994.tb00243.x
Subject(s) - geology , density contrast , graben , gravity anomaly , sedimentary basin , structural basin , sedimentary rock , anomaly (physics) , free air gravity anomaly , ridge , basement , bouguer anomaly , geophysics , geomorphology , paleontology , physics , civil engineering , condensed matter physics , astronomy , oil field , engineering
The variation in the density of sediments with depth in a sedimentary basin can be represented by a hyperbolic function. Gravity anomaly expressions for a 2D vertical prism and an asymmetric trapezium with a hyperbolic density distribution are derived in a closed form. These are used in inverting the gravity anomaly of a sedimentary basin with variable density. Firstly, the basin is viewed as a series of prisms juxtaposed with each other. The initial thickness of each prism is obtained from the gravity anomaly at its centre, based on the gravity anomaly of an infinite slab with a hyperbolic density contrast. These thicknesses are improved, based on the differences between the observed and the calculated anomalies. For an improved rate of convergence of the solution, these thicknesses may alternatively be refined using the well‐known ridge regression technique. Secondly, the basin is approximated by an asymmetric trapezium and its anomalies are inverted for the parameters of the trapezium using the ridge regression. Since this approximation serves to oversimplify the floor of the basin, it must be used only when the sediment‐basement interface has minor undulations. The results of a hypothetical case and two field cases (the San Jacinto Graben, California and the Godavari Graben, southern India) are presented. In both field cases, the interpreted depths are comparable with the real ones, proving the validity of the assumption of a hyperbolic density distribution of the sediments in the two basins considered.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here