Premium
THE MAGNETIC ANOMALY OF 3D SOURCES HAVING ARBITRARY GEOMETRY AND MAGNETIZATION
Author(s) -
RUOTOISTENMÄKI TAPIO
Publication year - 1993
Publication title -
geophysical prospecting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.735
H-Index - 79
eISSN - 1365-2478
pISSN - 0016-8025
DOI - 10.1111/j.1365-2478.1993.tb00577.x
Subject(s) - magnetization , remanence , magnetic anomaly , geometry , geology , polynomial , amplitude , plane (geometry) , geophysics , physics , mathematical analysis , magnetic field , mathematics , optics , quantum mechanics
A bstract Magnetic anomalies of complicated 3D sources can be calculated by using a combination of analytical and numerical integration. Two surfaces and the magnetization parameters (the amplitudes of the induced and remanent components and the direction cosines) of the source can be defined by arbitrary functions or by discrete data points in a plane. When combined with a polynomial magnetization function in the direction of the third axis, 3D magnetization distribution can also be modelled. The method gives very general equations for anomaly calculation. It can be used for direct modelling of sources interpreted by seismic or other methods and also for interactive interpretation with fast computers. It is possible to calculate anomalies of, for example, intrusives or folded sedimentary beds whose surfaces are functions of horizontal coordinates and which have polynomial magnetization variations in the vertical direction due to gravitational differentiation and arbitrarily varying magnetization in the horizontal direction due to regional metamorphosis. If the distribution of magnetization parameters in the vertical direction cannot be described satisfactorily by polynomials, models can be used whose surfaces are functions of the vertical coordinate and which can then have any arbitrary magnetization distribution in the vertical direction.