z-logo
Premium
COMPUTATION OF SIGNATURES OF LINEAR AIRGUN ARRAYS *
Author(s) -
VAAGE S.,
URSIN B.
Publication year - 1987
Publication title -
geophysical prospecting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.735
H-Index - 79
eISSN - 1365-2478
pISSN - 0016-8025
DOI - 10.1111/j.1365-2478.1987.tb00818.x
Subject(s) - signature (topology) , computation , field (mathematics) , bubble , physics , computer science , mechanics , algorithm , geometry , mathematics , pure mathematics
Far‐field signatures from an airgun array are usually obtained by carrying out extensive field measurements. In order to decrease the need for such measurements, we have developed a method for computing signatures from linear airgun arrays where the distances between the airguns are such that the non‐linear interaction among the airguns is negligible. The signature from a single airgun of a given type is computed from the following airgun parameters: airgun chamber volume, chamber pressure, airgun depth and position of the waveshape plate within the chamber. For calibration purposes, a recorded signature for one set of airgun parameters has to be provided for each type of airgun. The signatures are computed by using empirical relations between signature properties and the airgun parameters, and by treating the primary and bubble pulses separately. The far‐field signature from a linear airgun array can now be computed by summation of the delayed signatures from the airguns in the array. Practical results are shown for an array with different PAR (Bolt) 1500 C airguns.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here