z-logo
Premium
RESISTIVITY SOUNDING ON A MULTI‐LAYERED EARTH WITH TRANSITIONAL LAYERS. PART I: THEORY *
Author(s) -
PATELLA D.
Publication year - 1977
Publication title -
geophysical prospecting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.735
H-Index - 79
eISSN - 1365-2478
pISSN - 0016-8025
DOI - 10.1111/j.1365-2478.1977.tb01198.x
Subject(s) - electrical resistivity and conductivity , laplace transform , laplace's equation , mathematical analysis , resistive touchscreen , conductivity , depth sounding , boundary value problem , geometry , geology , mathematics , physics , computer science , quantum mechanics , computer vision , oceanography
A bstract The electrical potential generated by a point source of current on the ground surface is studied for a multi‐layered earth formed by layers alternatively characterized by a constant conductivity value and by conductivity varying linearly with depth. The problem is accounted for by solving a Laplace's differential equation for the uniform layers and a Poisson's differential equation for the transitional layers. Then, by a simple algorithm and by the introduction of a suitable kernel function, the general expression of the apparent resistivity for a Schlumberger array placed on the surface is obtained. Moreover some details are given for the solution of particular cases as 1) the presence of a infinitely resistive basement, 2) the absence of any one or more uniform layers, and 3) the absence of any one or more transitional layers. The new theory proves to be rather general, as it includes that for uniform layers with sharp boundaries as a particular case. Some mathematical properties of the kernel function are studied in view of the application of a direct system of quantitative interpretation. Two steps are considered for the solution of the direct problem: (i) The determination of the kernel function from the field measurements of the apparent resistivity. Owing to the identical mathematical formalism of the old with this new resistivity theory, the procedures there developed for the execution of the first step are here as well applicable without any change. Thus, some graphical and numerical procedures, already published, are recalled. (ii) The determination of the layer distribution from the kernel function. A recurrent procedure is proposed and studied in detail. This recurrent procedure follows the principle of the reduction to a lower boundary plane, as originally suggested by Koefoed for the old geoelectrical theory. Here the method differs mainly for the presence of reduction coefficients, which must be calculated each time when passing to a reduced earth section.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here