Premium
Carbon source for reproduction in a spring ephemeral herb, Corydalis ambigua (Papaveraceae)
Author(s) -
Kudo Gaku,
Ida Takashi Y.
Publication year - 2010
Publication title -
functional ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.272
H-Index - 154
eISSN - 1365-2435
pISSN - 0269-8463
DOI - 10.1111/j.1365-2435.2009.01601.x
Subject(s) - biology , nectar , botany , photosynthesis , reproduction , plant reproduction , perennial plant , pollinator , pollen , pollination , agronomy , ecology
Summary 1. The carbon source for reproduction in plants may differ between flowering and fruiting stages. To clarify how spring ephemerals use current photosynthetic products for reproduction, the allocation patterns of photosynthate at flowering and fruiting and the effects of resource limitation on reproductive performance in Corydalis ambigua were assessed. 2. A 13 C tracing experiment revealed that about 20% of the current photosynthetic carbon was used for reproduction at both flowering and fruiting. The proportion of 13 C allocated to fruits was constant irrespective of the light level. In contrast, 13 C translocation to tubers increased at fruiting, and this trend was accelerated when plants were shaded. 3. Defoliation treatment significantly reduced nectar production and tuber mass, while seed production was not affected. Therefore, when carbon assimilation was limited, carbon was preferentially allocated to current reproduction (seeds) rather than to pollinator attraction (nectar) or storage (tuber). 4. If seed production is partly supported by carbohydrate reserved in the old tissue of tubers, nectar and seed production may not compete strongly for carbon sources. In contrast to the ability of high seed production, the susceptibility of nectar production to current photosynthesis indicates that seed production of this species is basically limited by pollen capture. 5. Therefore, temporal separation of resource pool for reproduction may mitigate the joint limitation of seed production between pollinator attraction and resource availability. Temporal variation of the sink–source balance of storage organ is crucial to understand the cost of reproduction in perennial plants.