Premium
Changes in aquatic insect emergence in response to whole‐lake experimental manipulations of introduced trout
Author(s) -
POPE KAREN L.,
PIOVIASCOTT JONAH,
LAWLER SHARON P.
Publication year - 2009
Publication title -
freshwater biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.297
H-Index - 156
eISSN - 1365-2427
pISSN - 0046-5070
DOI - 10.1111/j.1365-2427.2008.02145.x
Subject(s) - stocking , trout , predation , predatory fish , biology , ecology , biomass (ecology) , mayfly , abundance (ecology) , brown trout , littoral zone , aquatic insect , habitat , benthic zone , forage fish , predator , sculpin , trophic cascade , fishery , larva , fish <actinopterygii>
Summary 1. Insects emerging from mountain lakes provide an important food source for many terrestrial predators. The amount of insect subsidy that emerges from lakes is influenced by predator composition, but predator effects could be ameliorated by greater habitat complexity. We conducted a replicated whole‐lake experiment to test the effects of introduced fish predators on the abundance and composition of aquatic insects within and emerging from the littoral zone of 16 mountain lakes in the Trinity Alps Wilderness in northwestern California. 2. Study treatments matched the fisheries management options being implemented in California’s wilderness areas: (i) continued stocking with non‐native trout, (ii) suspension of stocking, and (iii) suspension of stocking and removal of fish. We also included four naturally fishless ‘reference’ lakes. We compared abundances and biomass of emerging aquatic insects before treatments were initiated and for 3 years following their establishment. Abundances of benthic insects were also compared in the third year post‐treatment. 3. Trout removal rapidly increased abundances of mayflies, caddisflies, and insect predators, and overall insect biomass emerging from lakes. No significant differences were found between the suspension of stocking lakes and continued stocking lakes. Fish density was a more important predictor of aquatic insect emergence than habitat complexity. 4. Mayfly larvae responded positively to fish removal and caddisfly larvae tended to be more abundant in lakes without fish, but we did not detect effects on abundance of predatory insects. However, we found large insect predators in shallower water in lakes with fish compared to fish removal or fish‐free reference lakes. 5. These results provide insights into the continuing effects of past and current fish stocking practices on the flow of insect prey from mountain lakes into the neighbouring terrestrial environment. We also show that these consequences can rapidly be reversed by removing non‐native fishes.