z-logo
Premium
Resistance to ship‐induced waves of benthic invertebrates in various littoral habitats
Author(s) -
GABEL F.,
GARCIA X. F.,
BRAUNS M.,
SUKHODOLOV A.,
LESZINSKI M.,
PUSCH M. T.
Publication year - 2008
Publication title -
freshwater biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.297
H-Index - 156
eISSN - 1365-2427
pISSN - 0046-5070
DOI - 10.1111/j.1365-2427.2008.01991.x
Subject(s) - littoral zone , habitat , benthic zone , invertebrate , ecology , biology , environmental science , hydrobiology , aquatic environment
Summary 1. Ship‐induced waves disturb benthic invertebrate assemblages colonizing littoral zones of lakes and rivers. However, the impact of ship‐induced waves on invertebrates has rarely been quantified, and the influencing factors have not been addressed. 2. In an experimental wave tank, five benthic invertebrate species, Bithynia tentaculata, Calopteryx splendens , Dikerogammarus villosus, Gammarus roeseli and Laccophilus hyalinus , were exposed to waves of increasing shear stress (0.43–2.19 N m −2 ). Mean number of detached individuals was recorded for five littoral habitats [coarse woody debris (CWD), reeds, sand, stones and tree roots], representing different levels of structural complexity as quantified by their fractal dimensions (FD). 3. Results showed that detachment of invertebrates was significantly related to shear stress in all habitats except tree roots. Detachments averaged for the five species were significantly lower in habitats with a high degree of structural complexity, decreasing in the habitat sequence: sand, CWD, stones, reeds and tree roots. 4. Consistent with their different morphologies and methods of attachment to substrates, the five species displayed differences in their response to hydraulic stress that were dependent on habitat. 5. The increasing sheltering effect of structural habitat complexity was mirrored by increasing dissipation of the kinetic energy of waves; i.e. the FD of the habitat was positively correlated with shear stress reduction due to the flow resistance of the habitat. 6. Network habitats such as tree roots provided the best sheltering conditions against hydraulic disturbance, because they combined good refuge availability for all studied invertebrate species and maximal dissipation of kinetic wave energy. Consequently, persistent anthropogenic impacts, such as lakeshore modification or long‐term exposure to ship‐induced waves, which cause disappearance of complex littoral habitats such as tree roots or dense reed belts, will drastically increase the adverse effects of boating and ship traffic on littoral invertebrate assemblages.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here