Premium
Using biological assemblage composition to infer the values of covarying environmental factors
Author(s) -
YUAN LESTER L.
Publication year - 2007
Publication title -
freshwater biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.297
H-Index - 156
eISSN - 1365-2427
pISSN - 0046-5070
DOI - 10.1111/j.1365-2427.2007.01744.x
Subject(s) - covariance , statistics , inference , calibration , mathematics , multivariate statistics , observational error , analysis of covariance , econometrics , ecology , computer science , biology , artificial intelligence
Summary 1. Observations of different organisms can often be used to infer environmental conditions at a site. These inferences may be useful for diagnosing the causes of degradation in streams and rivers. 2. When used for diagnosis, biological inferences must not only provide accurate, unbiased predictions of environmental conditions, but also pairs of inferred environmental variables must covary no more strongly than actual measurements of those same environmental variables. 3. Mathematical analysis of the relationship between the measured and inferred values of different environmental variables provides an approach for comparing the covariance between measurements with the covariance between inferences. Then, simulated and field‐collected data are used to assess the performance of weighted average and maximum likelihood inference methods. 4. Weighted average inferences became less accurate as covariance in the calibration data increased, whereas maximum likelihood inferences were unaffected by covariance in the calibration data. In contrast, the accuracy of weighted average inferences was unaffected by changes in measurement error, whilst the accuracy of maximum likelihood inferences decreased as measurement error increased. Weighted average inferences artificially increased the covariance of environmental variables beyond what was expected from measurements, whereas maximum likelihood inference methods more accurately reproduced the expected covariances. 5. Multivariate maximum likelihood inference methods can potentially provide more useful diagnostic information than single variable inference models.