Premium
Invertebrate bioturbation can reduce the clogging of sediment: an experimental study using infiltration sediment columns
Author(s) -
NOGARO GERALDINE,
MERMILLODBLONDIN FLORIAN,
FRANÇOIS CARCAILLET FREDERIQUE,
GAUDET JEANPAUL,
LAFONT MICHEL,
GIBERT JANINE
Publication year - 2006
Publication title -
freshwater biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.297
H-Index - 156
eISSN - 1365-2427
pISSN - 0046-5070
DOI - 10.1111/j.1365-2427.2006.01577.x
Subject(s) - bioturbation , sediment , invertebrate , clogging , infiltration (hvac) , environmental science , hydraulic conductivity , biogeochemical cycle , hydrology (agriculture) , ecology , geology , soil science , biology , soil water , geotechnical engineering , geomorphology , history , archaeology , thermodynamics , physics
Summary 1. Invertebrate bioturbation can strongly affect water‐sediment exchanges in aquatic ecosystems. The objective of this study was to quantify the influence of invertebrates on the physical characteristics of an infiltration system clogged with fine sediment. 2. Two taxa (chironomids and tubificids) with different bioturbation activities were studied in experimental slow infiltration columns filled with sand and gravel and clogged with a 2 cm layer of fine sediment at the surface. We measured the effects of each taxon separately and combined on hydraulic head, water mobility and sediment reworking. 3. The results showed that invertebrates could reduce sediment clogging and this effect was linked to the functional mode of bioturbation of each group. Tubificid worms dug networks of galleries in the fine sediment, creating pathways for water flow, which reduced the clogging of sediment. In contrast, the U‐shaped tubes of chironomids were restricted to the superficial layer of fine sediments and did not modify the hydraulic conductivity of experimental columns. The combination of invertebrates did not show any interactive effects between tubificids and chironomids. The occurrence of 80 tubificids in the combination was enough to maintain the same hydraulic conductivity that 160 worms did in monospecific treatment. 4. The invertebrates like tubificid worms can have a great benefit on functioning of clogged interfaces by maintaining high hydraulic conductivity, which contributes to increased water‐sediment exchanges and stimulates biogeochemical and microbial processes occurring in river sediments.