Premium
The interaction of Chaoborus size and vertical distribution determines predation effects on Daphnia
Author(s) -
YOUNG JOELLE D.,
RIESSEN HOWARD P.
Publication year - 2005
Publication title -
freshwater biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.297
H-Index - 156
eISSN - 1365-2427
pISSN - 0046-5070
DOI - 10.1111/j.1365-2427.2005.01381.x
Subject(s) - daphnia pulex , daphnia , biology , predation , ecology , population , instar , midge , functional response , population density , predator , branchiopoda , cladocera , larva , zooplankton , demography , sociology
Summary 1. Larvae of Chaoborus , the phantom midge, are important pelagic planktivores in many freshwater lakes and ponds. The effect of Chaoborus on its prey depends on its size, especially mouth gape diameter, and vertical migration pattern, which affects predator–prey spatial overlap. These two features vary considerably in different Chaoborus species and instars. In this study, the interacting effects of both Chaoborus size and vertical distribution on population growth of Daphnia pulex was analysed with a field enclosure experiment and a matrix population model. 2. In the field experiment, Daphnia were grown in four replicated treatments that included a control (no Chaoborus ) and three combinations of instar III and IV Chaoborus of two species ( C. trivittatus and C. americanus ). Parameters of the matrix model were based on differences between Chaoborus species and instars in capture and ingestion of Daphnia of differing sizes (prey vulnerability) and in vertical overlap with Daphnia in each treatment (density risk). 3. In comparison with the control, the two treatments containing the smaller, migratory C. americanus showed a significant effect on Daphnia population growth rate, while the treatment containing only the larger, non‐migratory C. trivittatus did not. The model accurately simulated these effects. 4. A Daphnia predation risk model, which uses prey vulnerability and density risk parameters, illustrated the individual and combined effect of the different Chaoborus types on Daphnia . Daphnia have a high prey vulnerability to the large C. trivittatus , but overall predation risk was low because of very little overlap. On the contrary, the smaller C. americanus affects only a small range of Daphnia instars, each with a low vulnerability, yet those instars that were vulnerable had a very high density risk because of an increased overlap. 5. This analysis of Daphnia predation risk parameters with coexisting Chaoborus species strongly supports an integrated approach using both size and vertical distribution to determine the ultimate predation effect on Daphnia .