z-logo
Premium
Distribution of aquatic vascular plants in lowland rivers: separating the effects of local environmental conditions, longitudinal connectivity and river basin isolation
Author(s) -
DEMARS BENOÎT O. L.,
HARPER DAVID M.
Publication year - 2005
Publication title -
freshwater biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.297
H-Index - 156
eISSN - 1365-2427
pISSN - 0046-5070
DOI - 10.1111/j.1365-2427.2004.01329.x
Subject(s) - biological dispersal , habitat , ecology , vascular plant , biology , spatial distribution , species distribution , environmental science , geography , species richness , population , demography , remote sensing , sociology
Summary 1. Changes in species distributions along rivers have rarely been observed independently of changes in environmental conditions and meaningful comparison between different catchments is made difficult by the limited geographical distribution of species. This study presents a new approach to quantify the effect of the spatial structure of lowland river networks on aquatic plant distribution and to explore the potential underlying processes using species life‐history characteristics. 2. Twenty‐five species of aquatic vascular plants recorded in 62 sites across five calcareous river basins were used to investigate (i) the temporal turnover of plant species, (ii) the habitat utilisation of species, (iii) the trade‐offs between different plant life‐history characteristics and (iv) the relationship between species life‐history characteristics and habitat utilisation. 3. The annual plant turnover within a 3‐year period was, although significant, extremely low. It suggests that results from spatial surveys conducted over 3 years should not be undermined by temporal changes. 4. Spatial connectivity along and between rivers was more important than in‐channel physical characteristics in shaping species assemblages. Neither chemical factors (ammonium, phosphate) nor extrinsic biotic competitors (filamentous green algae) significantly influenced plant distribution. 5. The most common combinations of life‐history characteristics were neither related to environmental conditions nor to spatial isolation. Instead, they could reflect natural selection processes associated with larger scales than those considered in this study. 6. Plant distribution was most strongly related to the dispersal and regeneration abilities of the plants, supporting the hypotheses relating to longitudinal connectivity. The hypothesis that different growth forms would be associated with different in‐channel physical features was not verified. As expected, there were no substantial differences in plant life‐history characteristics between river basins.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here