z-logo
Premium
Catchment urbanisation and increased benthic algal biomass in streams: linking mechanisms to management
Author(s) -
Taylor Sally L.,
Roberts Simon C.,
Walsh Christopher J.,
Hatt Belinda E.
Publication year - 2004
Publication title -
freshwater biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.297
H-Index - 156
eISSN - 1365-2427
pISSN - 0046-5070
DOI - 10.1111/j.1365-2427.2004.01225.x
Subject(s) - benthic zone , environmental science , streams , drainage basin , hydrology (agriculture) , impervious surface , eutrophication , stormwater , hydrobiology , biomass (ecology) , ecology , nutrient , surface runoff , geography , biology , computer network , cartography , geotechnical engineering , aquatic environment , computer science , engineering
Summary 1. Urbanisation is an important cause of eutrophication in waters draining urban areas. We determined whether benthic algal biomass in small streams draining urban areas was explained primarily by small‐scale factors (benthic light, substratum type and nutrient concentrations) within a stream, or by catchment‐scale variables that incorporate the interacting multiple impacts of urbanisation (i.e. variables that describe urban density and the intensity of drainage or septic tank systems). 2. Benthic algal biomass was assessed as chlorophyll a density (chl a ) in 16 streams spanning a rural–urban gradient, with both a wide range of urban density and of piped stormwater infrastructure intensity on the eastern fringe of metropolitan Melbourne, Australia. The gradient of urban density among streams was broadly correlated with catchment imperviousness, drainage connection (proportion of impervious areas connected to streams by stormwater pipes), altitude, longitude and median phosphorus concentration. Catchment area, septic tank density, median nitrogen concentration, benthic light (photosynthetically active radiation) and substratum type were not strongly correlated with the urban gradient. 3. Variation in benthic light and substratum type within streams explained a relatively small amount of variation in log chl a (3–11 and 1–13%, respectively) compared with between‐site variation (39–54%). 4. Median chl a was positively correlated with catchment urbanisation, with a large proportion of variance explained jointly (as determined by hierarchical partitioning) by those variables correlated with urban density. Independent of this correlation, the contributions of drainage connection and altitude to the explained variance in chl a were significant. 5. The direct connection of impervious surfaces to streams by stormwater pipes is hypothesised as the main determinant of algal biomass in these streams through its effect on the supply of phosphorus, possibly in interaction with stormwater‐related impacts on grazing fauna. Management of benthic algal biomass in streams of urbanised catchments is likely to be most effective through the application of stormwater management approaches that reduce drainage connection.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here