Premium
Habitat and substrate influences on population and production dynamics of a stream caddisfly, Ceraclea ancylus (Leptoceridae)
Author(s) -
RESH VINCENT H.
Publication year - 1977
Publication title -
freshwater biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.297
H-Index - 156
eISSN - 1365-2427
pISSN - 0046-5070
DOI - 10.1111/j.1365-2427.1977.tb01674.x
Subject(s) - caddisfly , instar , riffle , voltinism , biology , ecology , population , larva , pupa , transect , zoology , habitat , demography , sociology
SUMMARY. Population and production dynamics of Ceraclea ancylus (Vorhies), a leptocerid caddisfly with a univoltine life cycle, five larval instars, and a single cohort population, were examined in Brashears Creek, Kentucky. A systematic sampling approach that included analysis in riffle, pool, and waterwillow bed habitats was used and fourteen sampling transects were taken across Brashears Creek between May 1971 and July 1972. For each of the 70 m 2 samples taken along a transect, the depth, habitat, and substrate type were recorded. The number of C. ancylus cases and numbers and dry weights of each larval instar were determined. The majority of the C. ancylus population was in the second larval instar in July, the third larval instar in August, the fourth larval instar in September, and the fifth larval instar from October through May. The spring population was 30% of the early instar maximum estimated the previous August. The spatial distribution of C. ancylus reflects a logarithmic pattern with early instar larvae more highly clumped than the late larval instar and pupal populations. Initial standing stock estimates were less than 1% of the standing stock biomass. A production estimate of 9.9 mg/m 2 ·year (dry weight) was determined using the instantaneous growth method, Allen's Curve method, and the Hynes method of estimating secondary production. Turnover ratios (7.0 annual TR, 5.7 cohort TR) were higher than estimates reported as typical for benthic macroinvertebrates because of the low initial to final mean individual weight of the C. ancylus larvae (0.4%). Production estimates calculated for C. ancylus populations in waterwillow bed (4.4 mg/m 2 ·year) and pool (13.7 mg/m 2 ·year) habitats were less than calculated for the riffle population (19.9 mg/m 2 ·year). The annual turnover ratio (10.2) was higher in the pool population than in other habitats because of spring larval migration into the pool from other habitats. A trend of higher production estimates with larger sized substrate particles and increased numbers of particles may reflect the increase in available food sources or attachment sites. The accuracy of production estimates and their applicability to water resource management may be limited by a failure to consider the spatial distributions of the population being sampled and the tendency for sampling procedures to be confined to single habitats.