Premium
Carbon chemistry and mineralization of peat soils from the Australian Alps
Author(s) -
Grover S. P. P.,
Baldock J. A.
Publication year - 2012
Publication title -
european journal of soil science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.244
H-Index - 111
eISSN - 1365-2389
pISSN - 1351-0754
DOI - 10.1111/j.1365-2389.2011.01424.x
Subject(s) - peat , mineralization (soil science) , chemistry , soil water , environmental chemistry , aeration , carbon fibers , water content , total organic carbon , nitrogen , mineralogy , soil science , environmental science , ecology , geology , materials science , organic chemistry , geotechnical engineering , biology , composite number , composite material
The carbon chemistry of 10 profiles of peat soil has been described in detail using 13 C nuclear magnetic resonance (NMR) spectroscopy. The changes with depth in the allocation of signal to different carbon functional groups were consistent with an increase in the extent of decomposition (EOD) of the organic material with depth. This increase in EOD with depth is typical of peat soils. Incubation experiments were carried out on peats spanning the range of EODs encountered, to investigate the effect upon mineralization of substrate quality (as defined by 13 C NMR spectroscopy), water content and particle size. The confounding factors of depth, water content, bulk density, aeration and carbon content were eliminated by incubating ground peat material in a sand matrix. The size of the mineralizable carbon pool and the rate of carbon mineralization were both significantly affected by substrate quality, water content and particle size. Substrate quality had the greatest effect upon the size of the mineralizable carbon pool: as substrate quality decreased, so too did the size of the mineralizable carbon pool. Water content had the greatest effect upon the rate of carbon mineralization, which increased and then decreased as water content increased, with a maximum rate constant at a volumetric water content of 0.37 cm 3 cm −3 .