z-logo
Premium
Calibration of visible and near infrared spectroscopy for soil analysis at the field scale on three European farms
Author(s) -
Kuang B.,
Mouazen A. M.
Publication year - 2011
Publication title -
european journal of soil science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.244
H-Index - 111
eISSN - 1365-2389
pISSN - 1351-0754
DOI - 10.1111/j.1365-2389.2011.01358.x
Subject(s) - calibration , partial least squares regression , residual , environmental science , soil test , czech , near infrared spectroscopy , mean squared error , soil science , cross validation , mathematics , soil water , statistics , physics , quantum mechanics , linguistics , philosophy , algorithm
The development of accurate calibration models for selected soil properties is a crucial prerequisite for successful implementation of visible and near infrared (Vis‐NIR) spectroscopy for soil analysis. This paper compares the performance of calibration models developed for individual farms with that of general models valid for three farms in three European countries. Fresh soil samples collected from farms in the Czech Republic, Germany and Denmark were scanned with a fibre‐type Vis‐NIR spectrophotometer. After dividing spectra into calibration (70%) and validation (30%) sets, spectra in the calibration set were subjected to partial least squares regression (PLSR) with leave‐one‐out cross‐validation to establish calibration models of soil properties. Except for the Czech Republic farm, individual farm models provided successful calibration for total carbon (TC), total nitrogen (TN) and organic carbon (OC), with coefficients of determination ( R 2 ) of 0.85–0.93 and 0.74–0.96 and residual prediction deviations (RPD) of 2.61–3.96 and 2.00–4.95 for the cross‐validation and independent validation respectively. General calibration models gave improved prediction accuracies compared with models of farms in the Czech Republic and Germany, which was attributed to larger ranges in the variation of soil properties in general models compared with those in individual farm models. The results revealed that larger standard deviations (SDs) and wider variation ranges have resulted in larger R 2 and RPD, but also larger root mean square errors of prediction (RMSEP). Therefore, a compromise solution, which also results in small RMSEP values, should be found when selecting soil samples for Vis‐NIR calibration to cover a wide variation range.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here