z-logo
Premium
Sedimentology and Stratigraphy
Author(s) -
Webster R.
Publication year - 2010
Publication title -
european journal of soil science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.244
H-Index - 111
eISSN - 1365-2389
pISSN - 1351-0754
DOI - 10.1111/j.1365-2389.2009.01225.x
Subject(s) - sedimentology , stratigraphy , citation , geology , library science , computer science , paleontology , tectonics
Every introductory geology course hammers home the message that the finer the grains in a sedimentary rock, the lower the energy under which it was deposited. This ‘received wisdom’ links to the ways in which grains move in moving fluids: rolling; bouncing and in suspension. A reductionist view sees this as the influence of Stokes’ Law in the boundary conditions between turbulent and laminar flow, close to the bed of flow and higher up in the fluid respectively. Stokes’ Law is invoked as it explains how spheres falling through fluids reach a steady speed related to the fluid’s viscosity. The larger the radius of the sphere, the greater that settling speed is. For the smaller size ranges settling speed is proportional to the square of the radius (laminar flow conditions), whereas for large objects it is proportional to the square root of radius (turbulent flow). This nicely explains the upward decreasing grain sizes in graded beds, formed when a mixture of grain sizes settles from moving fluids when their speed slow, as in turbidites and the on the lee sides of sand dunes. Since we often see silts and muds being deposited in low-energy lagoons and estuaries on the coast that too seems to verify the theory. However, muds that contain clay mineral particles are quite different from scaled-down spherical grains: they are platy; often have unbalanced electrical charges and are subject to Brownian motion that helps keep them in suspension. When clays suspended in fresh river water meet the sea, ions in sea water encourage the plates to clump together as aggregates or floccules that are much larger than the clay particles themselves. Another oddity is that, once deposited, clays are not as easily eroded as uncemented sands, partly due to their hosting biofilms that hold the particles together.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here