z-logo
Premium
Advances in characterization of soil clay mineralogy using X‐ray diffraction: from decomposition to profile fitting
Author(s) -
Hubert F.,
Caner L.,
Meunier A.,
Lanson B.
Publication year - 2009
Publication title -
european journal of soil science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.244
H-Index - 111
eISSN - 1365-2389
pISSN - 1351-0754
DOI - 10.1111/j.1365-2389.2009.01194.x
Subject(s) - clay minerals , illite , kaolinite , mineralogy , chlorite , soil water , expansive clay , geology , characterization (materials science) , diagenesis , paragenesis , chemistry , geochemistry , soil science , materials science , metamorphic rock , paleontology , quartz , nanotechnology
Summary Structural characterization of soil clay minerals often remains limited despite their key influence on soil properties. In soils, complex clay parageneses result from the coexistence of clay species with contrasting particle sizes and crystal chemistry and from the profusion of mixed layers with variable compositions. The present study aimed to characterize the mineralogy and crystal chemistry of the <2 μm fraction along a profile typical of soils from Western Europe and North America (Neo Luvisol). X‐ray diffraction (XRD) patterns were interpreted using: (i) the combination of XRD pattern decomposition and indirect identification from peak positions commonly applied in soil science; and (ii) the multi‐specimen method. This latter approach implies direct XRD profile fitting and has recently led to significant improvements in the structural characterization of clay minerals in diagenetic and hydrothermal environments. In contrast to the usual approach, the multi‐specimen method allowed the complete structural characterization of complex clay parageneses encountered in soils together with the quantitative analysis of their mineralogy. Throughout the profile, the clay paragenesis of the studied Neo Luvisol systematically includes discrete smectite, illite and kaolinite in addition to randomly interstratified illite‐smectite and chlorite‐smectite. Structural characteristics of the different clay minerals, including the composition of mixed layers, did not vary significantly with depth and are thus indicative of the parent material. The relative proportion of the <2 μm fraction increased with increasing depth simultaneously with smectite relative proportion. These results are consistent with the leaching process described for Luvisols in the literature.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here