Premium
Acid properties of fulvic and humic acids isolated from two acid forest soils under different vegetation cover and soil depth
Author(s) -
López R.,
Gondar D.,
Iglesias A.,
Fiol S.,
Antelo J.,
Arce F.
Publication year - 2008
Publication title -
european journal of soil science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.244
H-Index - 111
eISSN - 1365-2389
pISSN - 1351-0754
DOI - 10.1111/j.1365-2389.2008.01048.x
Subject(s) - chemistry , humic acid , organic matter , soil water , potentiometric titration , environmental chemistry , protonation , carboxylic acid , geology , organic chemistry , soil science , ion , fertilizer
Summary We studied the acid‐base properties of 16 fulvic acids and 16 humic acids isolated from the surface (3–15 cm) and subsurface (> 45 cm) horizons of two types of acid forest soils, derived respectively from amphibolite and granite rocks, under five different types of vegetation. The observed differences between the contents of humic substances in the two types of soils were related to the degree of Al‐saturation of the soil organic matter, as indicated by the molar ratio between pyrophosphate extractable Al and C. Humic fractions were characterized in terms of elemental composition, and CPMAS 13 C NMR spectrometry. The contents of carboxylic and phenolic groups were estimated by potentiometric titrations conducted in 0.1 m KNO 3 in a nitrogen atmosphere. The fulvic acids contained more carboxylic groups but less phenolic groups than the humic acids: the ratio of phenolic to carboxylic groups in the humic acids was 0.48 ± 0.10 and in the fulvic acids 0.23 ± 0.05. The mean values of the protonation constants of each of the humic substance fractions can be used as generic parameters for describing the proton binding properties. The fulvic acids isolated from the subsurface horizon of the soil contained between 2.6 and 23% more carboxylic groups, and the humic acids between 8 and 43% more carboxylic groups than those isolated from the surface horizon of the same soil.