Premium
Analysis of variance, inference, multiple comparisons and sampling effects in soil research
Author(s) -
Webster R.
Publication year - 2007
Publication title -
european journal of soil science
Language(s) - French
Resource type - Journals
SCImago Journal Rank - 1.244
H-Index - 111
eISSN - 1365-2389
pISSN - 1351-0754
DOI - 10.1111/j.1365-2389.2006.00801.x
Subject(s) - statistics , replicate , replication (statistics) , sampling (signal processing) , variance (accounting) , mathematics , residual , econometrics , computer science , algorithm , accounting , economics , filter (signal processing) , computer vision
Summary The analysis of variance is a crucial step in extracting information from efficiently designed experiments and surveys in soil science. It is only the beginning, however. From it, follow the standard errors (SEs) of means, SEs of differences and other effects provided by experiments, which in turn lead to tests of significance. Use the simple least significant difference (LSD) at some acceptable probability for testing comparisons of individual means. Do not use experiment‐wise multiple comparison tests. In experiments with graded treatments do not make multiple comparisons of any kind; instead fit a response curve and analyse the data by regression. Sampling fluctuation within experimental units and surveys contributes short‐range variation to the residual variance of measured soil properties and increases errors. Diminish this contribution either by replicate sampling and measurement within plots or by bulking before measurement. Sample all replicates in the field; sampling in the laboratory (pseudo‐replication) is no substitute. In almost all investigations the mean values for experimental treatments and survey classes are the most important outcomes. So report them with their SEs; readers will then be able to make of them what they will. L’analyse de variance, inférence, comparaisons multiples et des effets d’échantillonage dans la recherche du sol Résumé L’analyse de variance est une étape cruciale pour extraire des informations pertinentes des expériences et prospections conues en science du sol. Neanmoins, elle ne constitue qu’un commencement. D’elle proviennent les écart‐types des moyennes, les écart‐types des différences et d’autres paramètres issus d’expériences, dont la connaissance conduit aux tests de signification. Pour tester les différences entre couples de moyennes, il faut utiliser la plus petite différence significative simple et éviter les tests de comparaisons multiples entre l’ensemble des moyennes d’une expérience. Dans les expériences qui comprennent des traitements progressifs il ne faut pas faire des comparaisons entre les différents niveaux des traitements, mais ajuster une courbe de réponse puis analyser les données par régression. La fluctuation d’échantillonnage dans les unités expérimentales et les prospections contribue aux variations à courte distance au sein de la variance residuelle des propriétés du sol mesurées et augmente les erreurs. Cette contribution est réduite par un échantillonnage avec répétitions des mesures dans les parcelles ou par création d’échantillons composites avant mesure. Les répétitions doivent être effectuées au champ; l’échantillonnage au laboratoire (pseudo‐replication) n’est pas un substitut. Dans presque toutes les investigations les moyennes des traitements expérimentaux et des classes de sols sont les plus importantes. Il faut donc les estimer avec leurs écarts‐types; les lecteurs pourront ensuite effectuer leurs propres inférences.