Premium
Production of gaseous mercury in tropical hydromorphic soils in the presence of ferrous iron: a laboratory study
Author(s) -
Peretyazhko T.,
Charlet L.,
Grimaldi M.
Publication year - 2006
Publication title -
european journal of soil science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.244
H-Index - 111
eISSN - 1365-2389
pISSN - 1351-0754
DOI - 10.1111/j.1365-2389.2005.00729.x
Subject(s) - soil water , mercury (programming language) , chemistry , anoxic waters , ferrous , environmental chemistry , volatilisation , dissolution , mercure , adsorption , aqua regia , mineralogy , environmental science , soil science , analytical chemistry (journal) , metal , organic chemistry , computer science , programming language
Summary In this paper, we demonstrate that reduction of Hg(II) to Hg 0 under anaerobic conditions, followed by volatilization of Hg 0 to the atmosphere, might be responsible for the removal of Hg from tropical hydromorphic soils. We conducted a series of kinetic batch experiments in which we added Hg(II) to anoxic suspensions of a soil clay fraction and haematite nanoparticles. The clay fraction came from three depths in a hydromorphic soil by the Leblond River in French Guiana, South America: close to the upper and lower boundaries (30–40 cm and 90–100 cm) and within the central part (60–70 cm) of the frequently water‐saturated clay horizon. We prepared a second set of soil clay fraction suspensions with Fe(III) citrate, whose reduction acted as a source of dissolved Fe(II) to investigate the influence of Fe(II) on the production of Hg 0 . Reduction of Hg(II) to Hg 0 occurred with all samples amended with Fe(III) citrate. Laboratory experiments with haematite suspensions demonstrated that adsorption of Fe(II) to the haematite surface created very reactive sites for the reduction of Hg(II), while in the absence of haematite particles, no production of Hg 0 occurred. The greatest production of Hg 0 was found for the depth intervals 30–40 cm and 90–100 cm, where the total mercury concentration exhibits a local minimum. The observed pseudo‐first order rate constants for the 90–100 cm depth sample were close to rate constants reported for abiotic reduction of Hg(II) by Fe(II) adsorbed on mineral surfaces. Significant production of Hg 0 was found for the 90–100 cm depth interval sample, both with and without Fe(III) citrate. A biotic pathway as well as abiotic reduction by Fe(II) might be involved in the reduction of Hg(II) to Hg 0 .