Premium
The effect of spruce ( Picea abies Karst.) on soil development: an analytical and experimental approach
Author(s) -
RANGER J.,
NYS C.
Publication year - 1994
Publication title -
european journal of soil science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.244
H-Index - 111
eISSN - 1365-2389
pISSN - 1351-0754
DOI - 10.1111/j.1365-2389.1994.tb00501.x
Subject(s) - humus , picea abies , pedogenesis , biogeochemical cycle , environmental science , soil water , soil science , mineralization (soil science) , soil organic matter , chemistry , evergreen , environmental chemistry , ecology , biology
Summary Changes in soil and biogeochemical processes following the replacement, 60 years ago, of part of a deciduous forest by a coniferous stand were evaluated by (i) a balance‐sheet approach using soil and biomass element content analyses and the mineral flux, and (ii) the inclusion of test‐mineral and resin bags in an integrative experimental approach. The comparison of soils under different stands shows that the change to spruce is inducing physical, chemical and biological modifications in soil properties. Changes in the humus layers lead to a reduction in mineralization and the mobilization of active organic acids in the system. Under spruce, the soil structural stability is reduced as fine clay is dispersed. Soil acidification is increased, linked to a decrease in soil pH and desaturation of the soil exchange complex. Soil mineralogy also indicates this tendency, particularly with an increase in the stability of Al intergrades. The biogeochemical cycle is modified especially for N, S and Al. with large changes in the internal fluxes between the ecosystem components, but the modification of the input‐output balance due to spruce introduction is large only for S. The acidification is partly due to a change in litter quality, which inhibits biological activity, and partly because, during the dormant season, evergreen species intercept ‘dry and occult’ depositions from the atmosphere containing acidic or potentially acidic components. Use of test‐mineral bags improves understanding and interpretation of the current soil mechanisms. The test mineral, a vermiculite, introduced into the soil or placed in the lysimeter flux very quickly undergoes measurable transformation characterized by desaturation and fixation of non‐exchangeable Al in the interlayer zone, easily identified by Al speciation. The acidifying effect of spruce is clearly demonstrated by the experimental approach used, including the characterization of soil solutions by resin bags. All the techniques are complementary and could be used together or individually, depending on the aim of the study.