Premium
Sexual size dimorphism decreases with temperature in a blowfly, Chrysomya megacephala (Fabricius) (Diptera: Calliphoridae)
Author(s) -
HU YUWEI,
YUAN XI,
LEI CHAOLIANG
Publication year - 2011
Publication title -
ecological entomology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.865
H-Index - 81
eISSN - 1365-2311
pISSN - 0307-6946
DOI - 10.1111/j.1365-2311.2010.01251.x
Subject(s) - sexual dimorphism , biology , chrysomya megacephala , zoology , calliphoridae , phenotypic plasticity , variation (astronomy) , ectotherm , sexual selection , adaptation (eye) , degree (music) , ecology , larva , physics , neuroscience , astrophysics , acoustics
1. There is wide intra‐specific variation in sexual size dimorphism (SSD). Much of this variation is probably as a result of sexual differences in the selective pressure on body size. However, environmental variables could affect males and females differently, causing variation in SSD. 2. We examined the effects of two temperatures (20 and 30 °C) on SSD in six populations of the blowfly, Chrysomya megacephala . 3. We found that body size increased with temperature in all the populations studied, and the sexes differed in phenotypic plasticity of body size in response to rearing temperature. This created substantial temperature‐induced variation in SSD (i.e. sex × temperature interaction). Males were often smaller than females, but the degree of dimorphism was smaller at the higher temperature (30 °C) and larger at the lower temperature (20 °C). This change in SSD was not because of a gender difference in the effect of temperature on development time. Further studies should address whether this variation can be produced by adaptive canalisation of one sex against variation in temperature, or whether it may be a consequence of non‐adaptive developmental differences between the sexes. 4. Although most studies assume that the magnitude of SSD is fixed within a species, the present study demonstrates that rearing temperature can generate considerable intra‐specific variation in the degree of SSD.