z-logo
open-access-imgOpen Access
Human amnion‐derived mesenchymal stem cells are a potential source for uterine stem cell therapy
Author(s) -
Han K.,
Lee J. E.,
Kwon S. J.,
Park S. Y.,
Shim S. H.,
Kim H.,
Moon J. H.,
Suh C. S.,
Lim H. J.
Publication year - 2008
Publication title -
cell proliferation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.647
H-Index - 74
eISSN - 1365-2184
pISSN - 0960-7722
DOI - 10.1111/j.1365-2184.2008.00553.x
Subject(s) - mesenchymal stem cell , cd90 , stem cell , mesenchyme , biology , amnion , cd44 , microbiology and biotechnology , cd34 , stem cell marker , amniotic stem cells , cell therapy , cell , endothelial stem cell , adult stem cell , immunology , cancer research , in vitro , fetus , pregnancy , biochemistry , genetics
.  Objectives : Human amnion is an easy‐to‐obtain novel source of human mesenchymal stem cells, which poses little or no ethical dilemmas. We have previously shown that human amnion‐derived mesenchymal (HAM) cells exhibit certain mesenchymal stem cell‐like characteristics with respect to expression of stem cell markers and differentiation potentials. Materials and methods : In this study, we further characterized HAM cells’ potential for in vivo therapeutic application. Results : Flow cytometric analyses of HAM cells show that they express several stem cell‐related cell surface markers, including CD90, CD105, CD59, CD49d, CD44 and HLA‐ABC, but not CD45, CD34, CD31, CD106 or HLA‐DR. HAM cells at the 10th passage showed normal karyotype. More interestingly, the AbdB ‐like HOXA genes HOXA9 , HOXA10 and HOXA11 that are expressed in the mesenchyme of the developing female reproductive tract and pregnant uteri are also expressed in HAM cells, suggesting similarities between these two mesenchymal cell types. Progesterone receptor is also highly expressed in HAM cells and expression of genes or proteins in HAM cells could be manipulated with the aid of lentivirus technology or cell‐permeable peptides. To test potentials of HAM cells for in vivo application, we introduced enhanced green fluorescence protein (EGFP)‐expressing HAM cells to mice by intrauterine infusion (into uteri) or by intravenous injection (into the circulation). Presence of EGFP‐expressing cells within the uterine mesenchyme after intrauterine infusion or in lungs after intravenous injection was noted within 1–4 weeks. Conclusions : Collectively, these results suggest that HAM cells are a potential source of mesenchymal stem cells with therapeutic potential.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here