Premium
Divergent selection for shell length in two stocks of small abalone Haliotis diversicolor
Author(s) -
You WeiWei,
Ke CaiHuan,
Luo Xuan,
Wang DeXiang
Publication year - 2010
Publication title -
aquaculture research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.646
H-Index - 89
eISSN - 1365-2109
pISSN - 1355-557X
DOI - 10.1111/j.1365-2109.2009.02376.x
Subject(s) - abalone , biology , selective breeding , stock (firearms) , juvenile , heritability , population , fishery , selection (genetic algorithm) , control line , zoology , ecology , evolutionary biology , demography , mechanical engineering , electrical engineering , transmission line , artificial intelligence , sociology , computer science , engineering
To determine whether genetic improvement can be attained through a selective breeding programme, divergent selection for shell length was applied to two stocks of Haliotis diversicolor . Stock A was descended from the cross between males from a Japanese wild population and females from a Taiwan aquacultured population and Stock B was from the Taiwan cultured population, which had been successively cultured in mainland China for about 10 generations. The 10% largest and 10% smallest abalones for each of these two stocks were selected as parents for the large‐selected and small‐selected lines respectively. Equal numbers of abalone were randomly chosen from the two stocks to serve as parents for the control lines before the selection. The selected and control lines were reared under the same conditions at early juvenile, later juvenile and grow‐out stages. Stock A showed a significantly higher response to selection and realized heritability than Stock B ( P <0.01). The large‐selected line of Stock A and Stock B grew 12.79% and 4.58% faster than their control lines on shell length respectively. The average realized heritability for shell length was 0.441±0.064 for Stock A and 0.113±0.013 for Stock B. Responses to selection were different at different ages in each stock and the body weights of the selected lines were significantly different from the control lines in both stocks at the grow‐out stage. Asymmetric responses to selection in the two directions were also observed in both stocks. Differences in response to selection and realized heritability between the two stocks are presumably due to genetic variability.