Premium
Genetic linkage map of the pearl oyster, Pinctada martensii (Dunker)
Author(s) -
Shi Yaohua,
Kui Hong,
Guo Ximing,
Gu Zhifeng,
Wang Yan,
Wang Aimin
Publication year - 2009
Publication title -
aquaculture research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.646
H-Index - 89
eISSN - 1365-2109
pISSN - 1355-557X
DOI - 10.1111/j.1365-2109.2009.02299.x
Subject(s) - biology , amplified fragment length polymorphism , microsatellite , genetics , genetic linkage , pearl oyster , linkage (software) , genetic marker , pearl , gene mapping , mendelian inheritance , gene , allele , population , genetic diversity , chromosome , demography , philosophy , theology , sociology
Genetic linkage maps were constructed with amplified fragment length polymorphism (AFLP) and microsatellite markers for the pearl oyster, Pinctada martensii (Dunker), the main bivalve used for marine pearl production in Asia. Twenty‐four AFLP and 84 microsatellite primer pairs were used for linkage analysis in a full‐sib family with two parents and 78 offspring. Of the 2357 AFLP fragments generated, 394 (16.7%) were polymorphic and segregating. Most (340 or 86.2%) of the markers segregated according to expected Mendelian ratios. Female and male linkage maps were constructed using 230 and 189 markers, including 15 and 10 microsatellites respectively. The female map consisted of 110 markers in 15 linkage groups, covering 1415.9 cM, with an average interval of 14.9 cM. The male map consisted of 98 markers in 16 linkage groups, with a total length of 1323.2 cM and an average interval of 16.1 cM. When unlinked doublets were considered, genome coverages were 78.5% for the female and 73.5% for the male map. Although preliminary, the genetic maps constructed here should be useful for future linkage and quantitative trait loci mapping efforts.