z-logo
open-access-imgOpen Access
Mechanisms of powdery mildew resistance in the Vitaceae family
Author(s) -
FEECHAN ANGELA,
KABBARA SAMUELA,
DRY IAN B.
Publication year - 2011
Publication title -
molecular plant pathology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.945
H-Index - 103
eISSN - 1364-3703
pISSN - 1464-6722
DOI - 10.1111/j.1364-3703.2010.00668.x
Subject(s) - vitaceae , powdery mildew , biology , haustorium , botany , pathogen , mildew , microbiology and biotechnology , host (biology) , genetics , vitis vinifera
SUMMARY The cultivated grapevine, Vitis vinifera , is a member of the Vitaceae family, which comprises over 700 species in 14 genera. Vitis vinifera is highly susceptible to the powdery mildew pathogen Erysiphe necator . However, other species within the Vitaceae family have been reported to show resistance to this fungal pathogen, but little is known about the mechanistic basis of this resistance. Therefore, the frequency of successful E. necator penetration events, in addition to programmed cell death (PCD) responses, were investigated in a representative genotype from a range of different species within the Vitaceae family. The results revealed that penetration resistance and PCD‐associated responses, or combinations of both, are employed by the different Vitaceae genera to limit E. necator infection. In order to further characterize the cellular processes involved in the observed penetration resistance, specific inhibitors of the actin cytoskeleton and secretory/endocytic vesicle trafficking function were employed. These inhibitors were demonstrated to successfully break the penetration resistance in V. vinifera against the nonadapted powdery mildew E. cichoracearum . However, the use of these inhibitors with the adapted powdery mildew E. necator unexpectedly revealed that, although secretory and endocytic vesicle trafficking pathways play a crucial role in nonhost penetration resistance, the adapted powdery mildew species may actually require these pathways to successfully penetrate the plant host.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here