Premium
In Vitro Studies on the Mechanism of Acquired Resistance to Tuberculous Infection
Author(s) -
Muraoka Shizuko,
Takeya Kenji,
Nomoto Kikuo
Publication year - 1976
Publication title -
japanese journal of microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.664
H-Index - 70
eISSN - 1348-0421
pISSN - 0021-5139
DOI - 10.1111/j.1348-0421.1976.tb00917.x
Subject(s) - macrophage , immune system , bacilli , lymph node , microbiology and biotechnology , biology , intracellular , in vitro , lymphatic system , immunology , bacteria , biochemistry , genetics
The relationship between lymphocytes and macrophages in cellular immunity against tuberculous infection was studied by means of an in vitro cell culture system without addition of streptomycin. The peritoneal macrophages were obtained from normal mice or mice immunized with heat‐killed tubercle bacilli in paraffin oil, boosted with live BCG and infected with H37Rv cells in vitro . The infected monolayers of macrophages were cultivated for 48 hr with immune lymphoid cells obtained from immunized mice. The intracellular growth of H37Rv cells 3,5 and 7 days after infection was examined by counting tubercle bacilli within infected macrophages under a microscope. 1) The increase of bacilli within macrophages derived from immunized mice was slightly smaller than that in normal macrophages. 2) The addition of immune lymph node cells to the macrophage monolayers resulted in a marked decrease in the number of bacilli within both normal and “immune” macrophages. Conversely, normal lymph node cells exhibited an enhancing effect on the intracellular bacillary growth. 3) Immune lymph node cells showed a higher capacity to cause macrophages to suppress intracellular growth of bacilli than that of splenic lymphoid cells or thymocytes after addition to macrophage monolayers. 4) The treatment of lymphoid cells with inhibitors of protein synthesis, cycloheximide or streptovitacin A, resulted in a remarkable reduction of the ability of sensitized lymphocytes to cause macrophages to suppress multiplication of intracellular bacilli.