Premium
Calcium Phosphate Bioceramics with Various Porosities and Dissolution Rates
Author(s) -
Kwon SoonHo,
Jun YounKi,
Hong SeongHyeon,
Lee InSeop,
Kim HyounEe,
Won Ye Yeon
Publication year - 2002
Publication title -
journal of the american ceramic society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.9
H-Index - 196
eISSN - 1551-2916
pISSN - 0002-7820
DOI - 10.1111/j.1151-2916.2002.tb00599.x
Subject(s) - porosity , dissolution , materials science , coating , calcium , phosphate , ceramic , composite material , chemical engineering , chemistry , metallurgy , engineering , organic chemistry
Porous bioceramics, such as hydroxyapatite (HA), tricalcium phosphate (TCP), and biphasic HA/TCP, were fabricated using the polyurethane sponge technique. The porosity of the ceramics was controlled by a multiple coating of the porous body. When a porous body was produced by a single coating, the porosity was ∼90%, and the pores were completely interconnected. When the sintered body was coated five times after the porous network had been made, the porosity decreased to 65%. As the porosity decreased, the strength increased exponentially. The TCP exhibited the highest dissolution rate in a Ringer's solution, and the HA had the lowest rate. The biphasic HA/TCP showed an intermediate dissolution rate.