z-logo
Premium
New Method for Determining the Nucleation and Crystal‐Growth Rates in Glasses
Author(s) -
Ray Chandra S.,
Fang Xiangyu,
Day Delbert E.
Publication year - 2000
Publication title -
journal of the american ceramic society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.9
H-Index - 196
eISSN - 1551-2916
pISSN - 0002-7820
DOI - 10.1111/j.1151-2916.2000.tb01287.x
Subject(s) - nucleation , differential thermal analysis , crystal (programming language) , polishing , materials science , grinding , crystal growth , analytical chemistry (journal) , mineralogy , chemistry , crystallography , optics , metallurgy , chromatography , physics , organic chemistry , computer science , diffraction , programming language
The rates for nucleation ( I ) and crystal growth ( U ) for a lithium disilicate (Li 2 O·2SiO 2 , LS 2 ) glass were determined, as a function of temperature, using a new differential thermal analysis (DTA) technique. This technique requires in situ nucleation and crystal‐growth heat treatment of a small amount of powdered sample inside the DTA apparatus, which then are followed by a DTA scan at a constant heating rate. The I and U values that have been determined at selected temperatures for the LS 2 glass are in excellent agreement with those reported in the literature. The technique also has been used to determine the concentration of quenched‐in nuclei in LS 2 glasses prepared from melts that have been quenched at different rates, which are in reasonable agreement with those estimated from theoretical considerations. This new DTA technique is less tedious, requires a smaller amount of sample, and is at least 10 times faster than the conventional methods that have been used to measure I and U . Also, no special sample preparation, other than simply grinding and screening the glass to a particle size that is suitable for use, is required in this technique, whereas grinding, polishing, or etching is required in conventional methods. The excellent agreement in the I or U values that have been determined for the LS 2 glass via the present and conventional methods demonstrates the accuracy, validity, and usefulness of this DTA method for rapid determination of the nucleation and crystal‐growth rates in glasses.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here