Premium
Citric Acid—A Dispersant for Aqueous Alumina Suspensions
Author(s) -
Hidber Pirmin C.,
Graule Thomas J.,
Gauckler Ludwig J.
Publication year - 1996
Publication title -
journal of the american ceramic society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.9
H-Index - 196
eISSN - 1551-2916
pISSN - 0002-7820
DOI - 10.1111/j.1151-2916.1996.tb08006.x
Subject(s) - citric acid , adsorption , chemistry , aqueous solution , dispersant , isoelectric point , inorganic chemistry , dlvo theory , fourier transform infrared spectroscopy , suspension (topology) , surface charge , chemical engineering , colloid , dispersion (optics) , organic chemistry , physics , mathematics , homotopy , pure mathematics , optics , enzyme , engineering
The interaction between citric acid and alumina in aqueous solution is characterized. Adsorption isotherms of the dispersant on the alumina surface, electrophoretic mobility of the alumina particles as a function of the citric acid concentration, and attenuated total reflection Fourier transform infrared (ATR‐FTIR) spectroscopy of the citratealumina surface complex have been used. The adsorption behavior of citric acid is dependent on the pH of the suspension and the concentration of the citric acid. The maximum amount of citric acid adsorbed on the alumina surface, 2.17 μ.mol/m 2 at pH 3, decreases to 1.17 μmol/m 2 at pH 8. The adsorption of citrate causes a highly negatively charged powder surface and a shift of the isoelectric point (IEP) to lower pH values. The IEP of alumina can be fixed at any pH value between 9 and 3 by proper adjustment of the citric acid concentration. In situ ATR‐FTIR spectroscopy of the citrate‐alumina surface complex gives evidence for a direct interaction between the carboxylate groups of the citrate and the surface aluminum(III) atoms. The rheological properties of alumina suspensions are studied as a function of the citric acid concentration. The data obtained from the viscosity and dynamic electrophoretic measurements correlate well and allow the construction of a stability map of alumina suspensions stabilized with citric acid. The influence of citric acid on the viscosity is discussed using the Derjaguin‐Landau‐Verwey‐Overbeek (DLVO) theory. The interaction potential between the particles is determined by the citrate adsorbed on the surface, leading to a negative particle charge, and the citrate anions remaining in the solution, resulting in an increase of the ionic strength. The adsorption of citric acid also creates a steric barrier that inhibits the complete mutual approach of the individual alumina particles.