z-logo
Premium
Simulation of Hardness Testing on Plasma‐Sprayed Coatings
Author(s) -
Lin ChungKwei,
Lin ChungChieh,
Berndt Christopher C.
Publication year - 1995
Publication title -
journal of the american ceramic society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.9
H-Index - 196
eISSN - 1551-2916
pISSN - 0002-7820
DOI - 10.1111/j.1151-2916.1995.tb08505.x
Subject(s) - materials science , indentation hardness , weibull modulus , coating , ceramic , thermal barrier coating , weibull distribution , composite material , cubic zirconia , microstructure , statistics , mathematics
A plasma‐sprayed thermal barrier coating consisting of a NiCoCrAlY bond coat and Ce‐stabilized zirconia ceramic coating was heat‐treated at 400°C for 1000 h. Microhardness measurements were used to evaluate microstructural variations throughout the coating. One hundred and twenty measurements were performed at both the bond coat and ceramic coating positions within the thermal barrier coating system. Both data sets were analyzed to assess whether they could be described as Gaussian (i. e., “normal”) or Weibull distributions. The influence of the sample size, i. e., the number of microhardness tests for a group, on the mean hardness value was also evaluated by a Monte Carlo simulation procedure. The mean value, the standard deviation, the coefficient of variation, and the Weibull modulus for the subsets of data were calculated to assess these effects. The confidence for the mean value was also considered. The results indicated that the reliability of the microhardness test improved as the sample size increased. At least 20 measurements were needed to distinguish differences in micro‐hardness between the bond coat and the ceramic coating at a 95% confidence level.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here