Premium
Analysis of Fiber Frictional Sliding in Fiber Bundle Pushout Test
Author(s) -
Zhou LiMin,
Mai YiuWing
Publication year - 1994
Publication title -
journal of the american ceramic society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.9
H-Index - 196
eISSN - 1551-2916
pISSN - 0002-7820
DOI - 10.1111/j.1151-2916.1994.tb07099.x
Subject(s) - fiber bundle , fiber , materials science , bundle , stress (linguistics) , composite material , constraint (computer aided design) , mathematics , geometry , philosophy , linguistics
A simple theoretical model is developed to analyze the fiber frictional sliding resistance in a fiber bundle pushout test. The effect of the radial constraint imposed by the neighboring fibers on the stress transfer and frictional pushout stress is included in this analysis. Comparisons of theoretical results of this study and those of two existing fiber pushout models (i.e., single‐fiber pushout and three–cylinder) are also presented. For SiC–RBSN and SiC–glass composites with short embedded fiber lengths less than 1 mm, there is little difference between all these models. However, for larger embedded fiber lengths, the present model gives the highest frictional pushout stress caused by the more realistic radial constraint condition used in the analysis.