z-logo
Premium
Effect of Pressure on Plasma‐Assisted Chemical Vapor. Deposition of Silicon Oxide(s)
Author(s) -
Banerjee Aditi,
DebRoy Tarasankar
Publication year - 1994
Publication title -
journal of the american ceramic society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.9
H-Index - 196
eISSN - 1551-2916
pISSN - 0002-7820
DOI - 10.1111/j.1151-2916.1994.tb05417.x
Subject(s) - silane , chemical vapor deposition , deposition (geology) , nitrous oxide , silicon oxide , chemistry , silicon , plasma enhanced chemical vapor deposition , torr , analytical chemistry (journal) , plasma , oxide , combustion chemical vapor deposition , inorganic chemistry , thin film , chemical engineering , materials science , environmental chemistry , carbon film , nanotechnology , organic chemistry , silicon nitride , paleontology , thermodynamics , physics , quantum mechanics , sediment , engineering , biology
In most chemical vapor deposition processes, the film growth rate increases with the concentrations of the reactant gases. However, in the plasma‐assisted chemical vapor deposition of silicon oxide films, the deposition rate decreases when the concentrations of silane and nitrous oxide are increased by enhancing the reactor pressure from 0.5 to 2 torr (66 to 270 Pa). The deposition rate and the plasma properties have been examined for various reactor pressures to seek an improved understanding of the deposition process. Photo emissions from the plasma were monitored to determine the species present in the plasma and to calculate electron energy and density. With the increase in pressure, both the electron temperature and density decreased, and, consequently, the concentration of active species decreased. Although the concentrations of both silane and nitrous oxide increased with total pressure, the deposition rate decreased. The results emphasize the crucial importance of electron energy and density to generate sufficient concentration of active species responsible for film growth.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here