z-logo
Premium
Hardness–Grain‐Size Relations in Ceramics
Author(s) -
Rice Roy W.,
Wu Carl Cm.,
Boichelt Fred
Publication year - 1994
Publication title -
journal of the american ceramic society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.9
H-Index - 196
eISSN - 1551-2916
pISSN - 0002-7820
DOI - 10.1111/j.1151-2916.1994.tb04641.x
Subject(s) - knoop hardness test , materials science , grain size , vickers hardness test , grain boundary , mineralogy , indentation , crystal (programming language) , ceramic , impurity , indentation hardness , crystallography , analytical chemistry (journal) , composite material , chemistry , microstructure , organic chemistry , chromatography , computer science , programming language
Both Vickers and Knoop hardness ( H ), measured at two or more loads in the range of 100–2000 g (most commonly 100 and 500 g) for a variety of dense oxide and non‐oxide materials, covering a range of grain sizes ( G ), including single crystals where possible, were shown to generally be consistent with (often more limited) literature data. Apparently, conflicting trends of H (1) showing either no G dependence, (2) decreasing from single‐crystal or large G values with decreasing G , or (3) having the generally accepted increase with decreasing G are shown to be due to the combination of the limited extent of data and H generally heing determined by two basic trends. These two trends are (a) the normal inverse G (i.e., H–G −1/2 ) dependence at finer G , (b) a variable G minimum at intermediate G , and (c) H increasing with increasing G at larger G (to. single‐crystal values). The H minimum is due to local cracking around the indent (mostly along grain boundaries), generally reaching a maximum effect, e.g., minimum in H , when the indent and grain sizes are similar, and tends to be greater for Vickers vs Knoop indents, higher loads and probably greater grain boundary Impurity, additive contents, and stresses.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here