z-logo
Premium
Internal Nucleation of Highly Undercooled Magnesium Metasilicate Melts
Author(s) -
Cooper Reid F.,
Yoon Woo Young,
Perepezko John H.
Publication year - 1991
Publication title -
journal of the american ceramic society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.9
H-Index - 196
eISSN - 1551-2916
pISSN - 0002-7820
DOI - 10.1111/j.1151-2916.1991.tb04104.x
Subject(s) - materials science , crystallization , supercooling , nucleation , forsterite , texture (cosmology) , phase (matter) , ceramic , mineralogy , chemical engineering , glass ceramic , metastability , metallurgy , thermodynamics , chemistry , physics , organic chemistry , artificial intelligence , computer science , engineering , image (mathematics)
Crystallization and vitrification in undercooled, fine magnesium silicate droplets, with compositions ranging from 34.5 ≤ wt% MgO ≤ 39.9, were examined following containerless drop tube processing. From an initial phase assemblage of a mixture of the metasilicate (MgSiO 3 ) polymorphs orthoenstatite and clinoenstatite, three morphological powder types were observed following processing: unmelted shards, glass spheres, and melted/recrystallized spheres. The primary phase in the powders processed at a maximum temperature of ∼1650°C is the high‐temperature metasilicate polymorph protoenstatite, with metastable forsterite (Mg 2 SiO 4 ) also appearing. The melted/recrystallized spheres have the uniform, submicrometer texture of a glass ceramic, decisively different from the surface crystallization textures normally seen for melts/glasses of these compositions. Transmission electron microscopy results indicate that the glass‐ceramic texture occurs because the process technique allows a liquid‐phase immiscibility to precede crystallization. The phases and textures developed during containerless solidification processing of these metsilicate compositions are analyzed thermodynamically; the minimum amount of undercooling required for amorphous phase separation is evaluated using the metastable extensions of the forsterite + liquid and the silica‐rich, twoliquid miscibility phase boundaries. The application of metastable phase diagram analysis is demonstrated as an effective guide for identifying potential compositions for development of novel glass‐ceramics.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here