z-logo
Premium
Steric Effects in Stress Corrosion Fracture of Glass
Author(s) -
MICHALSKE TERRY A.,
BUNKER BRUCE C.
Publication year - 1987
Publication title -
journal of the american ceramic society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.9
H-Index - 196
eISSN - 1551-2916
pISSN - 0002-7820
DOI - 10.1111/j.1151-2916.1987.tb04879.x
Subject(s) - materials science , brittleness , corrosion , composite material , fracture mechanics , stress (linguistics) , fracture (geology) , diffusion , crack closure , thermodynamics , philosophy , linguistics , physics
Previous studies show that stress corrosion crack growth in glass is controlled by chemically enhanced crack tip bond rupture reactions. The brittle nature of fracture in glass suggests that the region where bond rupture reactions occur must be on the order of the atomic spacings in the material. Crack growth kinetics and zeolite diffusion data were used to determine the relation between molecular size and reactivity at the crack tip. Crack growth rates in silica glass were measured in the presence of a series of chemical species that have comparable chemical features and systematically increasing molecular diameters. Results show that chemically active species with diameters greater than 0.5 nm are ineffective as stress corrosion agents. A comparison of crack growth results and zeolite diffusion measurements was used to conclude that the opening to the crack tip is less than or equal to 0.5 nm. This crack tip dimension is consistent with the concept of atomic scale brittle fracture in silica glass.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here