Premium
Phylogenetic inference using non‐redundant coding of dependent characters versus alternative approaches for protein‐coding genes
Author(s) -
Simmons Mark P.,
Zhang LiBing,
Müller Kai F.
Publication year - 2011
Publication title -
cladistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.323
H-Index - 92
eISSN - 1096-0031
pISSN - 0748-3007
DOI - 10.1111/j.1096-0031.2010.00327.x
Subject(s) - phylogenetic tree , biology , clade , sampling (signal processing) , evolutionary biology , inference , taxon , range (aeronautics) , phylogenetics , coding (social sciences) , statistics , computational biology , gene , genetics , artificial intelligence , computer science , mathematics , ecology , materials science , filter (signal processing) , composite material , computer vision
Contemporary molecular phylogenetic analyses often encompass a broad range of taxonomic diversity while maintaining high levels of sampling within each major taxon. To help maximize phylogenetic signal in such studies, one may analyse multiple levels of characters simultaneously. We test the performance of both the original and the modified versions of non‐redundant coding of dependent characters (NRCDC) relative to commonly applied alternative character‐sampling strategies using codon‐based simulations under a range of conditions. Both original and modified NRCDC generally outperformed other character‐sampling strategies that only sampled characters at one level (nucleotides or amino acids) over a broader range of simulation parameters than any of the alternative character‐sampling strategies with respect to both overall success of resolution and averaged overall success of resolution in the parsimony‐based analyses. Based on theoretical considerations and the results of our simulations, we encourage application and further testing of modified NRCDC in parsimony‐based molecular phylogenetic analyses that sample exons of protein‐coding genes. We expect that modified NRCDC will generally increase both accuracy and branch‐support over commonly applied alternative character‐sampling strategies when analysed using the same phylogenetic inference method, particularly in studies that sample both closely and distantly related taxa with clades representing both ancient and recent divergences. © The Willi Hennig Society 2010.