z-logo
Premium
Divergence time estimates for major cephalopod groups: evidence from multiple genes
Author(s) -
Strugnell Jan,
Jackson Jennifer,
Drummond Alexei J.,
Cooper Alan
Publication year - 2006
Publication title -
cladistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.323
H-Index - 92
eISSN - 1096-0031
pISSN - 0748-3007
DOI - 10.1111/j.1096-0031.2006.00086.x
Subject(s) - cephalopod , biology , phylogenetic tree , molecular clock , taxon , evolutionary biology , divergence (linguistics) , cretaceous , paleontology , zoology , gene , genetics , linguistics , philosophy
This is the first study to use both molecular and fossil data to date the divergence of taxa within the coleoid cephalopods (octopus, squid, cuttlefish). A dataset including sequences from three nuclear and three mitochondrial genes (3415 bp in total) was used to investigate the evolutionary divergences within the group. Divergence time analyses were performed using the Thorne/Kishino method of analysis which allows multiple constraints from the fossil record and permits rates of molecular evolution to vary on different branches of a phylogenetic tree. The data support a Paleozoic origin of the Orders Vampyromorpha, Octopoda and the majority of the extant higher level decapodiform taxa. These estimated divergence times are considerably older than paleontological estimates. The major lineages within the Order Octopoda were estimated to have diverged in the Mesozoic, with a radiation of many taxa around the Cretaceous/Cenozoic boundary. Higher level decapodiform phylogenetic relationships appear to have been obscured due to an ancient diversification of this group. © The Willi Hennig Society 2006.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here