z-logo
Premium
Morphological and genetic differentiation in anadromous smelt Osmerus mordax (Mitchill): disentangling the effects of geography and morphology on gene flow
Author(s) -
Bradbury I. R.,
Coulson M. W,
Campana S. E.,
Bentzen P.
Publication year - 2006
Publication title -
journal of fish biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.672
H-Index - 115
eISSN - 1095-8649
pISSN - 0022-1112
DOI - 10.1111/j.1095-8649.2006.01263.x
Subject(s) - gene flow , biology , isolation by distance , genetic divergence , reproductive isolation , evolutionary biology , zoology , ecology , gene , genetics , genetic variation , population , genetic diversity , demography , sociology
Morphological analyses were combined with genetic analyses at nine microsatellite loci to examine the determinants of gene flow at 21 spawning locations of rainbow smelt Osmerus mordax along the east coast of Canada. Associations between morphology, geography and gene flow were examined using a computational geometric approach and partial Mantel tests. Significant barriers to gene flow and discontinuities in morphology were observed between Newfoundland and mainland Canada, as well as within Newfoundland samples. On regional scales, contrasting patterns were present with restricted gene flow between Newfoundland populations ( F ST = c . 0·11) and high gene flow between mainland populations ( F ST = c . 0·017). Within Newfoundland populations, geographic distance was significantly associated with gene flow ( r = 0·85, P < 0·001) contrasting mainland samples where gene flow was most associated with phenotypic divergence ( r = 0·33, P < 0·001). At large spatial scales, weak ( r = 0·19, P = 0·02) associations between gene flow and geographic distance were observed, and moderate associations were also observed between gene flow and morphology ( r = 0·28, P < 0·001). The presence of significant genetic isolation by distance in Newfoundland samples and the clear discontinuity associated with the Cabot Strait suggest geography may be the primary determinant of gene flow. Interestingly, the association between genetic and morphological divergence within mainland samples and overall, supports the hypothesis that gene flow may be moderated by morphological divergence at larger spatial scales even in high gene flow environments.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here