Premium
Improving anti‐predator responses of hatchery reared salmonids by social learning
Author(s) -
Hirvonen H.,
Vilhunen S.,
Brown C.,
Lintunen V.,
Laland K. N.
Publication year - 2003
Publication title -
journal of fish biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.672
H-Index - 115
eISSN - 1095-8649
pISSN - 0022-1112
DOI - 10.1111/j.1095-8649.2003.0216n.x
Subject(s) - hatchery , predation , biology , predator , endangered species , fishery , fish hatchery , social learning , fish <actinopterygii> , ecology , zoology , aquaculture , fish farming , habitat , psychology , pedagogy
Predation shortly after release is the main source of mortality among hatchery‐reared fish used to restore or enhance endangered salmonid populations. We found, that hatchery‐reared salmonid young originating from endangered stocks have weak innate responses to their natural fish predators. The ability to avoid predation in fish can be improved through social learning from experienced to naïve individuals. Huge benefits would be achieved, if social learning processes could be successfully applied on a large scale to enhance viability of hatchery fish prior to release into the wild. By using model predators together with chemical cues from real predators we tested if social learning could be used to train hatchery‐reared salmonid young to avoid fish predators. As there are clear differences in social behaviour among the salmonid species, we first examined whether these differences affect the probability and efficiency of learning anti‐predator skills from trained demonstrators. We compared anti‐predator responses of observers (fish trained by using experienced fish as demonstrators) with those of control fish, which had been ‘trained’ by untrained naïve conspecifics. We also examined how the efficiency of social learning depends on the ratio of experienced to naïve fish involved in social transmission trials. The results of these experiments will give guidelines how social learning could be utilized in developing hatchery scale training protocols.