Premium
S1P and LPA trigger Schwann cell actin changes and migration
Author(s) -
Barber Siân C.,
Mellor Harry,
Gampel Alex,
Scolding Neil J.
Publication year - 2004
Publication title -
european journal of neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.346
H-Index - 206
eISSN - 1460-9568
pISSN - 0953-816X
DOI - 10.1111/j.0953-816x.2004.03424.x
Subject(s) - microbiology and biotechnology , lysophosphatidic acid , rhoa , lamellipodium , actin cytoskeleton , rac1 , actin remodeling , actin remodeling of neurons , biology , sphingosine , cytoskeleton , mdia1 , cell migration , actin , chemistry , signal transduction , cell , receptor , biochemistry
The processes by which a Schwann cell (SC) migrates towards, wraps around and, in some cases, myelinates an axon are incompletely understood. The complex morphological rearrangements involved in these events require fundamental changes in the actin cytoskeleton. Sphingosine 1‐phosphate (S1P) and lysophosphatidic acid (LPA) are two modulators of the actin cytoskeleton, and receptors for these signalling lipids are expressed on SCs at the time of differentiation. Previous work has revealed a role for LPA in SC survival, morphology and differentiation, but the effects of S1P have received less attention. Here we show that S1P and LPA both cause major rearrangements to the actin cytoskeleton in primary rat SCs and the SCL4.1/F7 rat SC line. S1P and LPA caused formation of lamellipodia and a circular geodesic actin network. We also show that S1P and LPA increased cell migration. The small GTPases RhoA and Rac1 were both activated by S1P/LPA treatment, but the actin rearrangements were dependent on Rac1 and not RhoA. These effects of S1P/LPA could be mimicked by SCL4.1/F7 cell‐conditioned medium, which was found to contain S1P. Reduction in cellular synthesis of S1P by adding the sphingosine kinase inhibitor dimethyl sphingosine during medium conditioning reduced the ability of conditioned medium to cause actin rearrangements. These results support a role for S1P as an autocrine signal regulating the actin cytoskeleton during Schwann cell development.