Premium
The basal ganglia network mediates the planning of movement amplitude
Author(s) -
Desmurget M.,
Grafton S.T.,
Vindras P.,
Gréa H.,
Turner R. S.
Publication year - 2004
Publication title -
european journal of neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.346
H-Index - 206
eISSN - 1460-9568
pISSN - 0953-816X
DOI - 10.1111/j.0953-816x.2004.03395.x
Subject(s) - hypokinesia , basal ganglia , neuroscience , psychology , amplitude , movement (music) , physics , biology , central nervous system , endocrinology , optics , acoustics
This study addresses the hypothesis that the basal ganglia (BG) are involved specifically in the planning of movement amplitude (or covariates). Although often advanced, based on observations that Parkinson's disease (PD) patients exhibit hypokinesia in the absence of significant directional errors, this hypothesis has been challenged by a recent alternative, that parkinsonian hypometria could be caused by dysfunction of on‐line feedback loops. To re‐evaluate this issue, we conducted two successive experiments. In the first experiment we assumed that if BG are involved in extent planning then PD patients (who exhibit a major dysfunction within the BG network) should exhibit a preserved ability to use a direction precue with respect to normals, but an impaired ability to use an amplitude precue. Results were compatible with this prediction. Because this evidence did not prove conclusively that the BG is involved in amplitude planning (functional deficits are not restricted to the BG network in PD), a second experiment was conducted using positron emission tomography (PET). We hypothesized that if the BG is important for planning movement amplitude, a task requiring increased amplitude planning should produce increased activation in the BG network. In agreement with this prediction, we observed enhanced activation of BG structures under a precue condition that emphasized extent planning in comparison with conditions that emphasized direction planning or no planning. Considered together, our results are consistent with the idea that BG is directly involved in the planning of movement amplitude or of factors that covary with that parameter.