z-logo
Premium
Species diversity and structure of phytophagous beetle assemblages along a latitudinal gradient: predicting the potential impacts of climate change
Author(s) -
Andrew Nigel R.,
Hughes Lesley
Publication year - 2004
Publication title -
ecological entomology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.865
H-Index - 81
eISSN - 1365-2311
pISSN - 0307-6946
DOI - 10.1111/j.0307-6946.2004.00639.x
Subject(s) - generalist and specialist species , biology , species richness , range (aeronautics) , ecology , climate change , latitude , biodiversity , species diversity , environmental gradient , tropics , habitat , geography , materials science , geodesy , composite material
.  1. Assemblages of phytophagous beetles on Acacia were examined along a 1150 km latitudinal gradient in eastern Australia to investigate the potential effects of climate change on insect communities. The latitudinal gradient was used as a surrogate for differences in temperature. Several possible confounding variables were held constant by selecting comparable sites and emphasising a single host‐plant species. 2. Total species richness increased towards the tropics, but there were no significant differences among latitudes for average species density, species richness, Fisher's α , or average Chao‐1 index. 3. Beetles sampled along the gradient were classified into four climate change response groups, depending on their latitudinal range and apparent host specificity: cosmopolitan species, generalist feeders , climate generalists , and specialists . These four groups might respond differently to shifting climate zones. Cosmopolitan species (22% of community, found at more than one latitude and on more than one host plant) may be resilient to climate change. Generalist feeders (16%, found only at one latitude but found on more than one Acacia species) may well feed on several species but will have to move with their climatic envelope. Climate generalists (6%, found only on Acacia falcata but found at more than one latitude) may be constrained by the host species' ability to either cope with the changing climate or move with it. Finally, specialists (55%, found only on A. falcata and at only one latitude) may be forced to move poleward concurrently with their host species, or go extinct. 4. The analyses indicate that community structure may be fairly resilient to temperature change. The displacement or local extinction of species, especially the species that are found at only one latitude and on only one host plant, however, may lead to significant changes in community composition.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here