Premium
Risk Modeling, Assessment, and Management of Lahar Flow Threat
Author(s) -
Leung M. F.,
Santos J. R.,
Haimes Y. Y.
Publication year - 2003
Publication title -
risk analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.972
H-Index - 130
eISSN - 1539-6924
pISSN - 0272-4332
DOI - 10.1111/j.0272-4332.2003.00404.x
Subject(s) - lahar , risk analysis (engineering) , risk management , risk assessment , emergency management , environmental resource management , environmental planning , operations research , computer science , geography , engineering , business , volcano , environmental science , geology , political science , computer security , pyroclastic rock , finance , seismology , law
The 1991 eruption of Mount Pinatubo in the Philippines is considered one of the most violent and destructive volcanic activities in the 20th century. Lahar is the Indonesian term for volcanic ash, and lahar flows resulting from the massive amount of volcanic materials deposited on the mountain's slope posed continued post‐eruption threats to the surrounding areas, destroying lives, homes, agricultural products, and infrastructures. Risks of lahar flows were identified immediately after the eruption, with scientific data provided by the Philippine Institute of Volcanology, the U.S. Geological Survey, and other research institutions. However, competing political, economic, and social agendas subordinated the importance of scientific information to policy making. Using systemic risk analysis and management, this article addresses the issues of multiple objectives and the effective integration of scientific techniques into the decision‐making process. It provides a modeling framework for identifying, prioritizing, and evaluating policies for managing risk. The major considerations are: (1) applying a holistic approach to risk analysis through hierarchical holographic modeling, (2) applying statistical methods to gain insight into the problem of uncertainty in risk assessment, (3) using multiobjective trade‐off analysis to address the issue of multiple decisionmakers and stakeholders in the decision‐making process, (4) using the conditional expected value of extreme events to complement and supplement the expected value in quantifying risk, and (5) assessing the impacts of multistage decisions. Numerical examples based on ex post data are formulated to illustrate applications to various problems. The resulting framework from this study can serve as a general baseline model for assessing and managing risks of natural disasters, which the Philippines' lead agency—the National Disaster Coordinating Council (NDCC)—and other related organizations can use for their decision‐making processes.