z-logo
Premium
Assessment of arbovirus vector infection rates using variable size pooling
Author(s) -
Gu W.,
Lampman R.,
Novak R. J.
Publication year - 2004
Publication title -
medical and veterinary entomology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.028
H-Index - 82
eISSN - 1365-2915
pISSN - 0269-283X
DOI - 10.1111/j.0269-283x.2004.00482.x
Subject(s) - biology , arbovirus , pooling , vector (molecular biology) , virology , evolutionary biology , zoology , genetics , artificial intelligence , virus , computer science , gene , recombinant dna
.  Pool testing of vector samples for arboviruses is widely used in surveillance programmes. The proportion of infected mosquitoes (Diptera: Culicidae) is often estimated from the minimum infection rate (MIR), based on the assumption of only one infected mosquito per positive pool. This assumption becomes problematic when pool size is large and/or infection rate is high. By relaxing this constraint, maximum likelihood estimation (MLE) is more useful for a wide range of infection levels that may be encountered in the field. We demonstrate the difference between these two estimation approaches using West Nile virus (WNV) surveillance data from vectors collected by gravid traps in Chicago during 2002. MLE of infection rates of Culex mosquitoes was as high as 60 per 1000 at the peak of transmission in August, whereas MIR was less than 30 per 1000. More importantly, we demonstrate roles of various pooling strategies for better estimation of infection rates based on simulation studies with hypothetical mosquito samples of 18 pools. Variable size pooling (with a serial pool sizes of 5, 10, 20, 30, 40 and 50 individuals) performed consistently better than a constant size pooling of 50 individuals. We conclude that variable pool size coupled with MLE is critical for accurate estimates of mosquito infection rates in WNV epidemic seasons.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here