Premium
Lipoxygenase activity and proline accumulation in leaves and roots of olive trees in response to drought stress
Author(s) -
Sofo Adriano,
Dichio Bartolomeo,
Xiloyannis Cristos,
Masia Andrea
Publication year - 2004
Publication title -
physiologia plantarum
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.351
H-Index - 146
eISSN - 1399-3054
pISSN - 0031-9317
DOI - 10.1111/j.0031-9317.2004.00294.x
Subject(s) - olea , proline , malondialdehyde , olive trees , photosynthesis , transpiration , stomatal conductance , lipoxygenase , lipid peroxidation , drought stress , horticulture , botany , chemistry , biology , amino acid , oxidative stress , biochemistry , enzyme
The olive tree ( Olea europaea L.) is commonly grown in the Mediterranean basin and is able to resist severe and prolonged drought. Levels of proline (PRO) and malondialdehyde (MDA), and the lipoxygenase (LOX) activity were determined in 2‐year‐old olive plants (cv. ‘Coratina’) grown in environmental conditions characterized by high temperatures and high photosynthetic photon flux density levels and gradually subjected to a controlled water deficit for 20 days. Before and during the experimental period, leaf and root samples were collected and analysed for PRO and MDA. The levels of PRO increased in parallel with the severity of drought stress in both leaves and roots. Significant increases of LOX activity and MDA content were also observed during the progressive increment of drought stress in both leaf and root tissues. Measurements of transpiration and photosynthetic rate, stomatal conductance and substomatal CO 2 concentration were carried out during the experiment. The accumulation of PRO indicates a possible role of PRO in drought tolerance. The increases of MDA content and LOX activity show that the water deficit is associated with lipid peroxidation mechanisms.