Premium
Phenotypic plasticity in seedling defense strategies: compensatory growth and chemical induction
Author(s) -
Barton Kasey E.
Publication year - 2008
Publication title -
oikos
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.672
H-Index - 179
eISSN - 1600-0706
pISSN - 0030-1299
DOI - 10.1111/j.0030-1299.2008.16324.x
Subject(s) - chemical defense , seedling , biology , herbivore , plantaginaceae , compensatory growth (organ) , phenotypic plasticity , plantago , botany , plant defense against herbivory , shoot , juvenile , ecology , gene , kidney , biochemistry , endocrinology
Phenotypic plasticity in growth (leading to compensation) and secondary chemical production (leading to induction) in response to herbivory are key defense strategies in adult plants, but their role in seedling defense remains unclear. A pair of greenhouse studies was conducted to investigate compensation and induction in seedlings and juvenile plants, using Plantago lanceolata (Plantaginaceae) and the specialist buckeye caterpillar Junonia coenia (Nymphalidae) as a model system. Plants received 50% defoliation at two and four weeks of age, and groups of plants were harvested one week after herbivory and six to eight weeks after herbivory to investigate the duration of the responses. Plants damaged at two weeks showed no chemical induction and fully compensated for the lost leaf tissue by ten weeks of age. Plants damaged at four weeks showed a significant reduction in iridoid glycosides one week after herbivory and achieved full shoot compensation by ten weeks of age at the expense of root biomass. These results indicate that P. lanceolata seedlings use compensation, but not chemical induction, as a defense strategy. This research highlights the importance of considering ontogeny in studies of plant–herbivore interactions and suggests that seedling defense may differ markedly from adult plant defense.