Premium
Rodents change acorn dispersal behaviour in response to ungulate presence
Author(s) -
Muñoz Alberto,
Bonal Raúl
Publication year - 2007
Publication title -
oikos
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.672
H-Index - 179
eISSN - 1600-0706
pISSN - 0030-1299
DOI - 10.1111/j.0030-1299.2007.15710.x
Subject(s) - ungulate , acorn , biology , seed dispersal , biological dispersal , ecology , wood mouse , apodemus , herbivore , seed predation , seed dispersal syndrome , roe deer , habitat , population , demography , sociology
Small rodents are prominent seed predators, but they also favour plant recruitment as seed dispersers. The direct interactions of ungulates on plants are more one‐sided and negative, as they mainly reduce plant recruitment through predation on seeds and seedlings. The effects of small rodents and ungulates on plant recruitment have been considered and studied as independent episodes within plant regeneration cycles. However, ungulate–rodent interactions and their potential effects on plant regeneration have not been considered so far. A number of studies have recently documented ungulate effects on the abundance, diversity and spatial distribution of small rodents. Here, we hypothesize that ungulates may also affect rodent seed dispersal behaviour. We monitored acorn dispersal by small rodents ( Mus spretus and Apodemus sylvaticus ) in oak woodlands with and without exclosures for large ungulates, mainly red deer, Cervus elaphus, and wild boar, Sus scrofa . The study was carried out in a typical Mediterranean Holm oak, Quercus ilex, forest throughout the acorn fall season in 2003 and 2004. We found that, in both years, the proportion of acorns cached and not recovered in the short‐term was, on average, lower in the presence (1.4%) than in the absence (19.9%) of ungulates. Acorn dispersal distances were not affected by ungulate presence in either year. However, ungulates had an effect on the spatial distribution of dispersed seeds; rodents apparently avoided shrubs as caching sites in both years. This result was interpreted as a behavioural response to reduce the risk of cache pilferage by conspecifics, which are closely associated with shrubs in presence, but not in absence, of ungulates. Potential effects of different densities of rodents or predators were discarded, as none of them differed between the areas with and without ungulates. The present study found significant interactions between heterospecific seed and seedling consumers that had been considered as independent episodes within tree regeneration cycles. As a result of such interactions, ungulates may have negative indirect effects on oak recruitment by reducing (1) acorn caching frequency, and (2) the proportion of acorns cached under shrubs, key nurse‐plants for the establishment of Holm oak seedlings in Mediterranean areas.