Premium
4
Phylogeny of the dasycladales (ulvophyceae, chlorophyta) based on analyses of nuclear‐encoded large subunit rDNA
Author(s) -
M. P. Ashworth,
F. W. Zechman
Publication year - 2003
Publication title -
journal of phycology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.85
H-Index - 127
eISSN - 1529-8817
pISSN - 0022-3646
DOI - 10.1111/j.0022-3646.2003.03906001_4.x
Subject(s) - biology , monophyly , paraphyly , paleontology , character evolution , phylogenetics , evolutionary biology , botany , clade , genetics , gene
The Dasycladales is an ancient order of tropical benthic marine green algae, unique in their radially arranged unicellular thalli and well‐preserved fossil record due to extensive calcification of the thallus. The inference of an accurate phylogeny for the Dasycladales is important in order to better understand stratigraphy, character evolution, and classification. Previous analyses ( rbc L and 18S rDNA) suggested that the Family Acetabulariaceae is monophyletic, but that the Family Dasycladaceae is a basal paraphyletic assemblage. However, the two data sets disagreed regarding genus‐ and species‐level relationships within the Dasycladales. For example, the placement of the genera, Halicoryne , Bornetella and Cymopolia were incongruent. Given the conflicting results of these previous analyses, the current project examined a third highly conserved nuclear‐encoded gene, 26S rDNA. Aligned 26S rDNA sequences were analyzed with parsimony and model‐based methods and compared to previous results based on18S and rbc L sequences. Family‐level relationships based on 26S rDNA were congruent with previous studies: the Acetabulariaceae is monophyletic while the Dasycladaceae is paraphyletic. In addition, acetabulariacean genera are not monophyletic, suggesting that the presence of a corona inferior or calcification of gametes may not be appropriate to define genera. Within the Dasycladaceae, the basal position of Cymopolia is supported by 26S rDNA, a result congruent with rbcL and stratigraphy but not with 18S data. These results will be discussed in the context of morphological character evolution, fossil stratigraphy and family, tribal and generic relationships among these living algal fossils. Supported in part by NSF grant DEB‐0128977 to FWZ.