Premium
151
Phylogenetic Analysis of The Subgenus Euglena with Particualr Reference to the Type Species Euglena Viridis (Euglenophyceae)
Author(s) -
Shin W.,
Triemer R. E.
Publication year - 2003
Publication title -
journal of phycology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.85
H-Index - 127
eISSN - 1529-8817
pISSN - 0022-3646
DOI - 10.1111/j.0022-3646.2003.03906001_151.x
Subject(s) - biology , subgenus , euglena , botany , clade , genus , zoology , taxon , phylogenetics , chloroplast , evolutionary biology , genetics , gene
Euglena viridis was first described by Antony van Leeuwenhoek in 1674. This taxon later became the type for the genus Euglena erected by Ehrenberg in 1838. The primary characters that distinguish this taxon are the single stellate chloroplast and spherical mucocysts. A number of related Euglena species are similar in size, bear one or two stellate plastids and possess spherical or spindle‐shaped mucocysts. We conducted morphological and molecular studies on taxa in the subgenus Euglena (all of which bear stellate chloroplasts) and compared this to genera in the subgenus Calliglena (non‐stellate chloroplasts). Morphologically the strains in subgenus Euglena were very similar, except for chloroplast number and mucocyst shape. The E. stellata group has one chloroplast and a distinctive spindle‐shaped mucocyst; the E. geniculata group has two chloroplasts and spherical mucocysts; the E. viridis group has one chloroplast and spherical mucocysts. Molecular analyses using SSU and LSU rDNA demonstrated that the subgenus Euglena is not monophyletic. The combined SSU/LSU trees provide strong support for a stellate clade (subgenus Euglena ), but one strain of E. viridis diverges at the base of the Euglena/Calliglena lineage. Multiple subclades are found within the main stellate clade. E. tristellata forms a separate divergence and four E. stellata strains form a single, well‐supported subclade. Two E. viridis strains are among the E. geniculata group clade, while six others form two separate, but well‐supported clades. This study demonstrates that the type species, E. viridis , is paraphyletic and will need to be redefined.